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In the following, we define the Fourier transform and its inverse as

F (k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx, (1)

f(x) =
1√
2π

∫ ∞
−∞

F (k)eikxdx. (2)

Questions

1. Verify the divergence theorem for the vector field ρ = xx̂+ yŷ taking the
volume to be a cylinder whose axis is in the z direction and whose base is
centred at the origin.

2. Use Stoke’s theorem to show that∮
C

A · dl = −π, (3)

when A = 3yx̂+ 2xŷ − z3ẑ and C is the boundary of the surface S, the
upper half surface of the sphere: x2 + y2 + z2 = 1, z > 0.

3. Evaluate
∫∫
S

(∇×a) · dS where a = (2x− z2)x̂+ (x3 + yz3)ŷ− x2yẑ and

S is the surface of the cone z = 1−
√
x2 − y2 above the x− y plane.

4. Evaluate the Fourier transform of

f(x) =

{
x for− 1 < x < 1

0 otherwise
(4)

5. Evaluate the Fourier transform of

f(x) =

{
e−γx cos(k0x) for 0 < x <∞
0 otherwise

(5)

6. Evaluate the Fourier transform of

f(x) = e−x
2/2L2

.
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Solutions

1. Verify the divergence theorem for the vector field ρ = xx̂+ yŷ taking the
volume to be a cylinder whose axis is in the z direction and whose base is
centred at the origin.
Starting with the volume integral, we find that

∇ · ρ = 2

2

∫
dV = 2πr2h.

To evaluate the surface integral, we note that we won’t need to integrate
over the “caps” because ρ · ẑ = 0. The surface element for a cylinder is
then dS = rdθdzρ̂. Putting together the integral, we have∫∫

A · dS =

∫∫
(xx̂+ yŷ) · xx̂+ yŷ

ρ
ρdθdz

= ρ2
∫ 2π

0

dθ

∫ h/2

−h/2
dz

= 2πr2h.

So the left hand side of the divergence theorem is equal to the right hand
side.

2. Use Stoke’s theorem to show that∮
C

A · dl = −π, (6)

when A = 3yx̂+ 2xŷ − z3ẑ and C is the boundary of the surface S, the
upper half surface of the sphere: x2 + y2 + z2 = 1, z > 0.
One could try to evaluate the line integral directly, but this will be tricky.
Instead, we re–write the integral as

∫∫
(∇×A) ·dS, using Stoke’s theorem.

Evaluating the curl gives

∇×A =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z
3y 2x −z3

∣∣∣∣∣∣ = −ẑ.

As we are integrating over a sphere, the surface element normal is in the
r̂ direction. We can note that −ẑ · r̂ = − cos θ, where θ is the usual polar
angle from the z axis. As usual, the surface element is dS = r2 sin θdθdφ,
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so the surface integral is∫∫
(∇×A) · dS = r2

∫ 2π

0

dφ

∫ π/2

0

(− cos θ) sin θdθ

= −2π

∫ π/2

0

sin 2θ

2
dθ

= −π [− cos θ]
π/2
0

= −π(0 + 1)

= −π.

Note that the θ limits are 0 and π/2 as we are only integrating over a
hemisphere.

3. Evaluate
∫∫
S

(∇×a) · dS where a = (2x− z2)x̂+ (x3 + yz3)ŷ− x2yẑ and

S is the surface of the cone z = 1−
√
x2 − y2 above the x− y plane.

As with the previous question, the direct integral is hard to evaluate so
instead we make use of Stoke’s theorem and convert this into a line integral
around the circle at the base of the cone in the x − y plane,

∮
a · dl. In

this plane, z = 0 and dl = rdθdθ̂. Noting that θ̂ = − sin θx̂ + cos θŷ, we
have ∮

a · dl =

∮
rdθ

[
−2x sin θ + x3 cos θ

]
= r2

∫ 2π

0

[
−2 cos θ sin θ + r2 cos4 θ

]
dθ

= r4
3π

4

=
3π

4

4. Evaluate the Fourier transform of

f(x) =

{
x for− 1 < x < 1

0 otherwise
(7)

We proceed in the usual way, evaluating the integral

F (k) =
1√
2π

∫ 1

−1
xe−ikxdx. (8)

Integrating by parts
∫
vdu = uv −

∫
vdu with u = x and dv = e−ikx, we
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get du = 1 and v = (−1/ik)e−ikx, giving

F (k) =
1√
2π

[
ix

k
e−ikx

∣∣∣∣1
−1
− i

k

∫ 1

−1
e−ikxdx

]

=
1√
2π

[
2i cos k

k
− 2i

k2
sin k

]
= i

√
2

π

k cos k − sin k

k2
.

5. Evaluate the Fourier transform of

f(x) =

{
e−γx cos(k0x) for 0 < x <∞
0 otherwise

(9)

To do this, we will write cos(k0x) in exponential form, so that the integral
can be performed straight away

F (k) =
1

2
√

2π

∫ ∞
0

e−x[i(k−k0)+γ] + e−x[i(k+k0)+γ]

=
1

2
√

2π

[
1

i(k − k0) + γ
+

1

i(k + k0) + γ

]
=

1

2
√

2π

[
i(k + k0) + γ + i(k − k0) + γ

γ2 + 2iγk + k20 − k2

]
=

1√
2π

ik + γ

(ik + γ)2 + k20
.

6. Evaluate the Fourier transform of

f(x) = e−x
2/2L2

.

To do this, we need to work out the integral

F (k) =
1√
2π

∫ ∞
−∞

e−x
2/2L2

e−ikxdx

=
1√
2π

∫ ∞
−∞

e−x
2/(2L2)−ikxdx.

This is a standard Gaussian integral∫ ∞
−∞

a−ax
2+bx+c =

√
π

a
eb

2/(4a)+c,

with a = 1/2L2, b = −ik and c = 0. This gives

F (k) = Le−k
2L2/2.
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This result can be interpreted as a form of the uncertainty relation in quan-
tum mechanics. The original function f(x) represents a particle localised
as a Gaussian in space with ∆x ∼ L. The Fourier transform represents
the momentum distribution. If we re–write k in terms of the momentum
p using p = ~k, then

F (p) = Le−p
2L2/2~2

.

This means that ∆p ∼ ~/L, so ∆p∆x ∼ L~/L = ~. This is the uncertainty
condition, up to numerical factors.
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