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For the following questions, we will define Fourier series as

ag = é/_LLf(x)dac, ap = é/_LLf(x)cos (?) dr. b, = i/_LLf(:B)sin (%) dz.

1. Find the Fourier series of

Now, for a,,
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Finally, b,
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which means that for even n, b, = 0 and for odd n, b, = 2/(nx). The series is
then defined as
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The first few terms are
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2. Find the Fourier series of
flx)y=2* —T<x<m.

Then, set © = 7 and show that [[]
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Solution: We begin by noting that f(x) is even, so b, = 0 Vn. We can find ag
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Now, for a,, we must evaluate
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This can be integrated by parts [udv = uv — [vdu, choosing

u = x> dv = cosnx
du = 2z v = —sinnx
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IThis is the Riemann Zeta function ¢(2).




The boundary term is zero as sin(+nm) = 0 and the second integral can be
evaluated by parts again, choosing

U=z dv = sinnx
du =z VU = — COSNX
n
giving
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The integral is zero as the limits are symmetric and cos(x) is an even function.
Putting the limits into the boundary term, we have
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So, the Fourier series is define via
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If we set x = 7, we find that
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we note that (—1)?" is always 1, so
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3. Expand 6(z —t) in a Fourier series, over —7 < x,t < 7.

Solution: It is important to observe that ¢ is within the range of integration,
otherwise all of the integrals would vanish due to the properties of the delta
function. We begin by finding ag

ag = l/ O(x — t)dx
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Now, for a,,

ap = l/ 0(x —t) cosnzdx

™ —T
1
= —cosnt.
™
Similarly,
1 ™
b, = — 0(xz — t) sinnzdz
™ —Tr
1.
= —sinnt.
™
The Fourier series is then
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4. Find the Fourier series of
flx)=z,—1<z<m.

Solution: The function is odd, so a, = 0 and ag = 0, so we only need to
evaluate
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This can be integrated by parts with
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The integral is zero by symmetry, so we are left with
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The Fourier series is therefore
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