Fourier Series

James Capers

March 8, 2022

For the following questions, we will define Fourier series as

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x . \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

1. Find the Fourier series of

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ 1, & 0<x<\pi\end{cases}
$$

Solution: We begin with a_{0} :

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{0}^{\pi}(1) d x \\
& =1
\end{aligned}
$$

Now, for a_{n}

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{0}^{\pi} \cos (n \pi x / L) d x \\
& =\frac{1}{\pi} \frac{L}{n \pi}[\sin (n \pi x / L)]_{0}^{\pi} \\
& =\frac{1}{n \pi}(\sin n \pi-\sin 0) \\
& =0
\end{aligned}
$$

Finally, b_{n}

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{0}^{\pi} \sin (n \pi x / L) d x \\
& =-\frac{1}{n \pi}[\cos (n x)]_{0}^{\pi} \\
& =-\frac{1}{n \pi}(\cos n \pi-1)
\end{aligned}
$$

which means that for even $n, b_{n}=0$ and for odd $n, b_{n}=2 /(n \pi)$. The series is then defined as

$$
a_{n}=\left\{\begin{array}{l}
0, \text { for } n \neq 0 \\
1, \text { for } n=0
\end{array} \quad b_{n}=\left\{\begin{array}{l}
0, \text { for even } n \\
\frac{2}{n \pi}, \text { for odd } n
\end{array}\right.\right.
$$

The first few terms are

$$
f(x)=\frac{1}{2}+\frac{2}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x\right)
$$

2. Find the Fourier series of

$$
f(x)=x^{2},-\pi<x<\pi
$$

Then, set $x=\pi$ and show that ${ }^{1}$

$$
\frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Solution: We begin by noting that $f(x)$ is even, so $b_{n}=0 \forall n$. We can find a_{0} as

$$
\begin{aligned}
a_{0} & =\frac{1}{L} \int_{-\pi}^{\pi} x^{2} d x \\
& =\frac{1}{3 \pi}\left[x^{3}\right]_{-\pi}^{\pi} \\
& =\frac{2 \pi^{2}}{3} .
\end{aligned}
$$

Now, for a_{n} we must evaluate

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} d x x^{2} \cos n x
$$

This can be integrated by parts $\int u d v=u v-\int v d u$, choosing

$$
\begin{array}{rlrl}
u & =x^{2} & d v=\cos n x \\
d u & =2 x & v=\frac{1}{n} \sin n x
\end{array}
$$

giving

$$
a_{n}=\frac{1}{\pi}\left[\left.\frac{x^{2}}{n} \sin n x\right|_{-\pi} ^{\pi}-\frac{2}{n} \int_{-\pi}^{\pi} x \sin n x d x\right] .
$$

[^0]The boundary term is zero as $\sin (\pm n \pi)=0$ and the second integral can be evaluated by parts again, choosing

$$
\begin{array}{rlr}
u & =x & d v \\
d u & =x & v=\frac{-1}{n} \cos n x
\end{array}
$$

giving

$$
a_{n}=-\frac{2}{n \pi}\left[-\left.\frac{x}{n} \cos n x\right|_{-\pi} ^{\pi}+\int_{-\pi}^{\pi} \frac{\cos n x}{n}\right] .
$$

The integral is zero as the limits are symmetric and $\cos (x)$ is an even function. Putting the limits into the boundary term, we have

$$
\begin{aligned}
a_{n} & =\frac{2}{n^{2} \pi}(\pi \cos (n \pi)-\pi \cos (-n \pi)) \\
& =\frac{4}{n^{2} \pi} \pi \cos n \pi \\
& =\frac{4}{n^{2}}(-1)^{n}
\end{aligned}
$$

So, the Fourier series is define via

$$
a_{0}=\frac{2 \pi^{2}}{3} \quad a_{n}=\frac{4}{n^{2}}(-1)^{n} \quad b_{n}=0
$$

If we set $x=\pi$, we find that

$$
\begin{aligned}
x^{2} & =\frac{2 \pi^{2}}{6}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x \\
\pi^{2} & =\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \pi \\
& =\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{n^{2}}
\end{aligned}
$$

we note that $(-1)^{2 n}$ is always 1 , so

$$
\frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

3. Expand $\delta(x-t)$ in a Fourier series, over $-\pi<x, t<\pi$.

Solution: It is important to observe that t is within the range of integration, otherwise all of the integrals would vanish due to the properties of the delta function. We begin by finding a_{0}

$$
\begin{aligned}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} \delta(x-t) d x & \\
& =\frac{1}{\pi} .
\end{aligned}
$$

Now, for a_{n}

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \delta(x-t) \cos n x d x \\
& =\frac{1}{\pi} \cos n t
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \delta(x-t) \sin n x d x \\
& =\frac{1}{\pi} \sin n t
\end{aligned}
$$

The Fourier series is then

$$
\begin{aligned}
\delta(x-t) & =\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{\infty}(\cos n t \cos n x+\sin n t \sin n x) \\
& =\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{n=1}^{\infty} \cos [n(x-t)]
\end{aligned}
$$

4. Find the Fourier series of

$$
f(x)=x,-\pi<x<\pi
$$

Solution: The function is odd, so $a_{n}=0$ and $a_{0}=0$, so we only need to evaluate

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin (n x) d x
$$

This can be integrated by parts with

$$
\begin{array}{rlrl}
u & =x & d v= \\
d u & =1 & v=\frac{-1}{n} \cos n x
\end{array}
$$

giving

$$
b_{n}=\frac{1}{\pi}\left[-\left.\frac{x}{n} \cos n x\right|_{-\pi} ^{\pi}+\frac{1}{n} \int_{-\pi}^{\pi} d x \cos n x\right]
$$

The integral is zero by symmetry, so we are left with

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi}(-1) \cos n \pi \\
& =\frac{2}{\pi}(-1)^{n+1}
\end{aligned}
$$

The Fourier series is therefore

$$
f(x)=\frac{2}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \sin n x
$$

[^0]: ${ }^{1}$ This is the Riemann Zeta function $\zeta(2)$.

