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Abstract

Most of the questions this week are taken from chapter 5 of “Mathe-
matical Methods for Physicists” by Arfken and Weber.

In the questions below, we’ll use the following definitions. The Taylor series
is an expansion of a function about a point, a and is defined as

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+

f ′′′′(a)

4!
(x−a)4+. . .

(1)
The special case of a = 0 is called a Maclaurin series.

Binomial series is defined as

(1 + x)m =

∞∑
n=0

m!

n!(m− n)!
xn. (2)

As we will see, this can be derived by applying the Maclaurin series to (1+x)m.

1. Find the Maclaurin series of

f(x) = ex.

The derivative of ex is ex and this evaluated at x = 0 is 1, making the
series easy to compute.

ex = e0 + xe0 +
x2

2!
e0 +

x3

3!
e0 + . . .

= 1 + x +
x2

2
+

x3

6
+ . . .

2. Find the Maclaurin series of

f(x) = ln(1 + x),
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and show that for x = 1 this becomes the harmonic series
∑∞

n=1(−1)n−1n−1.
We begin by finding the series expansion.

f(0) = 0

f ′(x) =
1

1 + x
f ′(0) = 1

f ′′(x) =
11

(1 + x)2
f ′′(0) = −1

f ′′′(x) =
2

(1 + x)3
f ′′′(0) = 2

f ′′′′(x) =
−6

(1 + x)4
f ′′′′(0) = −6

f ′′′′′(x) =
25

(1 + x)5
f ′′′′′(0) = 24

so that

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
+ . . .

Then, for x = 1, this becomes

ln(2) = 1− 1

2
+

1

3
− 1

4
+

1

5
+ . . .

which can be written as
∑∞

n=1(−1)n−1n−1.

3. The total relativistic energy of a particle of mass m and velocity v is

E = mc2
(

1− v2

c2

)−1/2
.

Compare this with the classical kinetic energy mv2/2.
To make the comparison, let’s say that x = v2/c2 and expand (1− x)−1/2

for x = 0. This corresponds to the limit where v � c, where we expect
the effects of relativity to be small. Making the expansion

f(0) = 1

f ′(x) =
1

2
(1− x)−3/2 f ′(0) =

1

2

f ′′(x) =
3

4
(1− x)−5/2 f ′′(0) =

3

4

f ′′′(x) =
15

8
(1− x)−7/2 f ′′′(0) =

15

8
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so that the energy expansion, in terms of v2/c2 is

E = mc2

[
1 +

1

2

(
v2

c2

)
+

3

8

(
v2

c2

)2

+
15

8

1

3!

(
v2

c2

)3

+ . . .

]

= mc2 +
1

2
mv2 + . . .

The first term is the mass–energy and the second term is the usual classical
kinetic energy. All of the higher terms represent relativistic corrections to
the energy as v → c.

4. By applying the Maclaurin series to (1 + x)m, derive the Binomial series.
Evaluating the series, we have

f(0) = 1

f ′(x) = m(1 + x)m−1 f ′(0) = m

f ′′(x) = m(m− 1)(1 + x)m−2 f ′′(0) = m(m− 1)

f ′′′(x) = m(m− 1)(m− 2)(1 + x)m−3 f ′′′(0) = m(m− 1)(m− 2).

Putting this together, we have

(1 + x)m = 1 + mx + m(m− 1)
x2

2
+ m(m− 1)(m− 2)

x3

3!
+ . . .

Comparing this with the binomial series, which is usually written as

(1 + x)m =

∞∑
k=0

(
m
k

)
xk,

(
m
k

)
=

m(m− 1)(m− 2) . . . (m− k + 1)

k!

we can see that the two are identical.

5. Derive the geometric series by expanding

f(x) =
1

1− x
.

around x = 0.
Evaluating the series, we have

f(0) = 1

f ′(0) =
1

(1− x)2
f ′(0) = 1

f ′′(0) =
2

(1− x)3
f ′′(0) = 2

f ′′′(0) =
6

(1− x)4
f ′′′(0) = 6

f ′′′′(0) =
24

(1− x)5
f ′′′′(0) = 24
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so that
(1− x)−1 = 1 + x + x2 + x3 + x4 + . . .

This is the geometric series and clearly only converges when |x| < 1. As
long as this condition is met, each term is smaller than the one before it
and the sum converges.

6. (a) Given that

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . .

show that

ln

(
1 + x

1− x

)
= 2

(
x +

x3

3
+

x5

5
+ . . .

)
.

We begin by noting that ln
(

1+x
1−x

)
= ln(1 + x) − ln(1− x). Now,

since we know the expansion of ln(1 + x), we can find the expansion
for ln(1− x) without any differentiation, by just replacing x → −x
in the expansion. This gives us

ln(1− x) = −x− x2

2
− x3

3
− x4

4
+ . . .

so that

ln

(
1 + x

1− x

)
=

(
x− x2

2
+

x3

3
− x4

4

)
−
(
−x− x2

2
− x3

3
− x4

4

)
= 2

(
x +

x3

3
+

x5

5
+ . . .

)
.

(b) Expand f(x) = arctanx around x = 0.
Evaluating the series, we have

f(0) = 1

f ′(x) = (1 + x2)−1 f ′(0) = 1

f ′′(x) = −2x(1 + x2)−2 f ′′(0) = 0

f ′′′(x) = 8x2(1 + x2)−3 − 2(1 + x2)−2 f ′′′(0) = −2

f ′′′′(x) = −48x3(1 + x2)−4 + 24x(1 + x2)−2 f ′′′′(0) = 0

f ′′′′′(x) = 384x4(1 + x2)−5 − 288x2(1 + x2)−4 + 24(1 + x2)−3 f ′′′′′(0) = 24.

Giving

arctan(x) = 1− x3

3
+

x5

5
+ . . .

(c) Expand using the binomial theorem

f(t) =
1

1 + t2
.
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Expanding using the binomial theorem we wrote down in question 4,
replacing x with t2, we get

(1 + t2)−1 = 1− t2 + t4 − t6 + t8 + . . .

(d) Using this expansion, integrate term by term to show that

arctanx =

∫ x

0

dt

1 + t2
=

∞∑
n=0

(−1)n
x2n+1

2n + 1
.

Integrating term by term, we get∫ x

0

dt

1 + t2
=

∫ x

0

dt−
∫ x

0

dt t2 +

∫ x

0

dt t4 + . . .

= [t]
x
0 −

[
t3

3

]x
0

+

[
t5

5

]x
0

+ . . .

= x− x3

3
+

x5

5
+ . . .

= arctan(x).

(e) By comparing the series, show that

arctanx =
i

2
ln

(
1− ix

1 + ix

)
.

We know from part (a) that

ln

(
1 + x

1− x

)
= 2

(
x +

x3

3
+

x5

5
+ . . .

)
so using log laws we have

ln

(
1− x

1 + x

)
= −2

(
x +

x3

3
+

x5

5
+ . . .

)
.

Now, we know that

i

2
ln

(
1− ix

1 + ix

)
= −2

i

2

(
ix +

i3x3

3
+

i5x5

5
+ . . .

)
=

1

i

(
ix− i

x3

3
+ i

x5

5
+ . . .

)
= x− x3

3
+

x5

5
+ . . .

= arctan(x).

We made use of the fact that −i = 1/i.
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