Series

James Capers *

December 15, 2021

Abstract

Most of the questions this week are taken from chapter 5 of "Mathematical Methods for Physicists" by Arfken and Weber.

In the questions below, we'll use the following definitions. The Taylor series is an expansion of a function about a point, a and is defined as
$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\frac{f^{\prime \prime \prime \prime}(a)}{4!}(x-a)^{4}+\ldots$
The special case of $a=0$ is called a Maclaurin series.
Binomial series is defined as

$$
\begin{equation*}
(1+x)^{m}=\sum_{n=0}^{\infty} \frac{m!}{n!(m-n)!} x^{n} \tag{2}
\end{equation*}
$$

As we will see, this can be derived by applying the Maclaurin series to $(1+x)^{m}$.

1. Find the Maclaurin series of

$$
f(x)=e^{x}
$$

The derivative of e^{x} is e^{x} and this evaluated at $x=0$ is 1 , making the series easy to compute.

$$
\begin{aligned}
e^{x} & =e^{0}+x e^{0}+\frac{x^{2}}{2!} e^{0}+\frac{x^{3}}{3!} e^{0}+\ldots \\
& =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots
\end{aligned}
$$

2. Find the Maclaurin series of

$$
f(x)=\ln (1+x)
$$

[^0]and show that for $x=1$ this becomes the harmonic series $\sum_{n=1}^{\infty}(-1)^{n-1} n^{-1}$. We begin by finding the series expansion.
\[

$$
\begin{aligned}
f(0) & =0 & \\
f^{\prime}(x) & =\frac{1}{1+x} & f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =\frac{11}{(1+x)^{2}} & f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x) & =\frac{2}{(1+x)^{3}} & f^{\prime \prime \prime}(0)=2 \\
f^{\prime \prime \prime \prime}(x) & =\frac{-6}{(1+x)^{4}} & f^{\prime \prime \prime \prime}(0)=-6 \\
f^{\prime \prime \prime \prime \prime}(x) & =\frac{25}{(1+x)^{5}} & f^{\prime \prime \prime \prime \prime}(0)=24
\end{aligned}
$$
\]

so that

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}+\ldots
$$

Then, for $x=1$, this becomes

$$
\ln (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\ldots
$$

which can be written as $\sum_{n=1}^{\infty}(-1)^{n-1} n^{-1}$.
3. The total relativistic energy of a particle of mass m and velocity v is

$$
E=m c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}
$$

Compare this with the classical kinetic energy $m v^{2} / 2$.
To make the comparison, let's say that $x=v^{2} / c^{2}$ and expand $(1-x)^{-1 / 2}$ for $x=0$. This corresponds to the limit where $v \ll c$, where we expect the effects of relativity to be small. Making the expansion

$$
\begin{array}{rlrl}
f(0) & =1 & \\
f^{\prime}(x) & =\frac{1}{2}(1-x)^{-3 / 2} & f^{\prime}(0) & =\frac{1}{2} \\
f^{\prime \prime}(x) & =\frac{3}{4}(1-x)^{-5 / 2} & f^{\prime \prime}(0) & =\frac{3}{4} \\
f^{\prime \prime \prime}(x) & =\frac{15}{8}(1-x)^{-7 / 2} & f^{\prime \prime \prime}(0) & =\frac{15}{8}
\end{array}
$$

so that the energy expansion, in terms of v^{2} / c^{2} is

$$
\begin{aligned}
E & =m c^{2}\left[1+\frac{1}{2}\left(\frac{v^{2}}{c^{2}}\right)+\frac{3}{8}\left(\frac{v^{2}}{c^{2}}\right)^{2}+\frac{15}{8} \frac{1}{3!}\left(\frac{v^{2}}{c^{2}}\right)^{3}+\ldots\right] \\
& =m c^{2}+\frac{1}{2} m v^{2}+\ldots
\end{aligned}
$$

The first term is the mass-energy and the second term is the usual classical kinetic energy. All of the higher terms represent relativistic corrections to the energy as $v \rightarrow c$.
4. By applying the Maclaurin series to $(1+x)^{m}$, derive the Binomial series. Evaluating the series, we have

$$
\begin{aligned}
f(0) & =1 & & \\
f^{\prime}(x) & =m(1+x)^{m-1} & f^{\prime}(0) & =m \\
f^{\prime \prime}(x) & =m(m-1)(1+x)^{m-2} & f^{\prime \prime}(0) & =m(m-1) \\
f^{\prime \prime \prime}(x) & =m(m-1)(m-2)(1+x)^{m-3} & f^{\prime \prime \prime}(0) & =m(m-1)(m-2)
\end{aligned}
$$

Putting this together, we have

$$
(1+x)^{m}=1+m x+m(m-1) \frac{x^{2}}{2}+m(m-1)(m-2) \frac{x^{3}}{3!}+\ldots
$$

Comparing this with the binomial series, which is usually written as

$$
(1+x)^{m}=\sum_{k=0}^{\infty}\binom{m}{k} x^{k}, \quad\binom{m}{k}=\frac{m(m-1)(m-2) \ldots(m-k+1)}{k!}
$$

we can see that the two are identical.
5. Derive the geometric series by expanding

$$
f(x)=\frac{1}{1-x}
$$

around $x=0$.
Evaluating the series, we have

$$
\begin{aligned}
f(0) & =1 & \\
f^{\prime}(0) & =\frac{1}{(1-x)^{2}} & f^{\prime}(0)=1 \\
f^{\prime \prime}(0) & =\frac{2}{(1-x)^{3}} & f^{\prime \prime}(0)=2 \\
f^{\prime \prime \prime}(0) & =\frac{6}{(1-x)^{4}} & f^{\prime \prime \prime}(0)=6 \\
f^{\prime \prime \prime \prime}(0) & =\frac{24}{(1-x)^{5}} & f^{\prime \prime \prime \prime}(0)=24
\end{aligned}
$$

so that

$$
(1-x)^{-1}=1+x+x^{2}+x^{3}+x^{4}+\ldots
$$

This is the geometric series and clearly only converges when $|x|<1$. As long as this condition is met, each term is smaller than the one before it and the sum converges.
6. (a) Given that

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
$$

show that

$$
\ln \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots\right) .
$$

We begin by noting that $\ln \left(\frac{1+x}{1-x}\right)=\ln (1+x)-\ln (1-x)$. Now, since we know the expansion of $\ln (1+x)$, we can find the expansion for $\ln (1-x)$ without any differentiation, by just replacing $x \rightarrow-x$ in the expansion. This gives us

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
$$

so that

$$
\begin{aligned}
\ln \left(\frac{1+x}{1-x}\right) & =\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)-\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}\right) \\
& =2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots\right)
\end{aligned}
$$

(b) Expand $f(x)=\arctan x$ around $x=0$.

Evaluating the series, we have

$$
\begin{array}{rlrl}
f(0) & =1 & \\
f^{\prime}(x) & =\left(1+x^{2}\right)^{-1} & f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & =-2 x\left(1+x^{2}\right)^{-2} & f^{\prime \prime}(0) & =0 \\
f^{\prime \prime \prime}(x) & =8 x^{2}\left(1+x^{2}\right)^{-3}-2\left(1+x^{2}\right)^{-2} & f^{\prime \prime \prime \prime}(0) & =-2 \\
f^{\prime \prime \prime \prime \prime}(x) & =-48 x^{3}\left(1+x^{2}\right)^{-4}+24 x\left(1+x^{2}\right)^{-2} & f^{\prime \prime \prime \prime}(0) & =0 \\
f^{\prime \prime \prime \prime \prime}(x) & =384 x^{4}\left(1+x^{2}\right)^{-5}-288 x^{2}\left(1+x^{2}\right)^{-4}+24\left(1+x^{2}\right)^{-3} & f^{\prime \prime \prime \prime \prime}(0) & =24 .
\end{array}
$$

Giving

$$
\arctan (x)=1-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots
$$

(c) Expand using the binomial theorem

$$
f(t)=\frac{1}{1+t^{2}}
$$

Expanding using the binomial theorem we wrote down in question 4, replacing x with t^{2}, we get

$$
\left(1+t^{2}\right)^{-1}=1-t^{2}+t^{4}-t^{6}+t^{8}+\ldots
$$

(d) Using this expansion, integrate term by term to show that

$$
\arctan x=\int_{0}^{x} \frac{d t}{1+t^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

Integrating term by term, we get

$$
\begin{aligned}
\int_{0}^{x} \frac{d t}{1+t^{2}} & =\int_{0}^{x} d t-\int_{0}^{x} d t t^{2}+\int_{0}^{x} d t t^{4}+\ldots \\
& =[t]_{0}^{x}-\left[\frac{t^{3}}{3}\right]_{0}^{x}+\left[\frac{t^{5}}{5}\right]_{0}^{x}+\ldots \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \\
& =\arctan (x)
\end{aligned}
$$

(e) By comparing the series, show that

$$
\arctan x=\frac{i}{2} \ln \left(\frac{1-i x}{1+i x}\right) .
$$

We know from part (a) that

$$
\ln \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots\right)
$$

so using log laws we have

$$
\ln \left(\frac{1-x}{1+x}\right)=-2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots\right)
$$

Now, we know that

$$
\begin{aligned}
\frac{i}{2} \ln \left(\frac{1-i x}{1+i x}\right) & =-2 \frac{i}{2}\left(i x+\frac{i^{3} x^{3}}{3}+\frac{i^{5} x^{5}}{5}+\ldots\right) \\
& =\frac{1}{i}\left(i x-i \frac{x^{3}}{3}+i \frac{x^{5}}{5}+\ldots\right) \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \\
& =\arctan (x)
\end{aligned}
$$

We made use of the fact that $-i=1 / i$.

[^0]: *jrc232@exeter.ac.uk

