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Abstract

Most of the questions this week are taken from chapter 3 of “Mathe-
matical Methods in the Physical Sciences”, by M. L. Boas.

1. Given the curve y = x2 from x = 0 to x = 1, find

(a) the area under the curve (that is, the area bounded by the curve, the
x axis, and the line x = 1;
We must evaluate the integral

A =

∫ 1

0

dx

∫ x2

0

dy =

∫ 1

0

x2dx =
1

3
.

(b) the mass of a plane sheet of material cut in the shape of this area if
its density (mass per unit area) is xy;
To find the mass, we integrate the density over the area.

M =

∫ 1

0

dx

∫ x2

0

dyxy

=

∫ 1

0

xdx

∫ x2

0

ydy

=

∫ 1

0

xdx

[
y2

2

]x2

0

=

∫ 1

0

dx
x5

2

=
1

12
.

(c) the arc length of the curve;

The element of length is dl =
√
dx2 + dy2, which can be re–written
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as dl =
√

1 + (dy/dx)2dx. To find the total length between x = 0
and x = 1 we need to integrate.

L =

∫ 1

0

√
1 + 4x2dx.

This is a slightly tricky integral, but we can evaluate it with the
substitution

x =
sinhu

2
dx =

coshu

2
du.

Along the way, we’ll need the double angle formulae for the hyperbolic
functions, so we’ll write these down now

cosh(2x) = 2 cosh2 x− 1 sinh(2x) = 2 sinhx coshx.

Putting in the substitution and using the fact that cosh2 x−sinh2 x =
1 and using the double angle formula, we have

L =

∫
1

2
coshudu

√
1 + sinh2 u

=
1

2

∫
du cosh2 u

=
1

4

∫
du(1 + cosh 2u).

This can be integrated without too much trouble, to give

I =
1

4

(
u+

1

2
sinh 2u

)
.

Since we didn’t bother to change the limits and work out the definite
integral in terms of only u, let’s undo the substitution. The first
term is easy to undo, but for the second term, we re–write sinh 2u =

2 sinhu coshu and then note that coshu =
√

1 + sinh2 u. This gives
us

I =
1

4
sinh−1(2x) +

1

2
x
√

1 + 4x2.

To find L, we must put in the limits. At the lower limit, everything
is zero, so putting in the upper limit x = 1 gives us

L =
1

4
sinh−1(2) +

√
5

2
≈ 1.48.

(d) the center of mass;
To find the centre of mass, we must evaluate the integrals

x̄ =
1

M

∫
dA x ρ ȳ =

1

M

∫
dA y ρ.
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Starting with x̄, noting that 1/M = 12 (from part b), we have

x̄ =
1

M

∫ 1

0

dx

∫ x2

0

dyx2y

= 12

∫ 1

0

dx

[
x2y2

2

]x2

0

= 12

∫ 1

0

dx
x6

2

=
12

14

[
x7
]1
0

x̄ =
6

7
.

And now the ȳ integral

ȳ =
1

M

∫ 1

0

dx

∫ x2

0

dyxy2

= 12

∫ 1

0

dx

[
xy3

3

]x2

0

= 12

∫ 1

0

dx
x7

3

= 4

[
x8

8

]1
0

ȳ =
1

2
.

(e) the moments of inertia about the x, y, and z axes of the lamina.
To find the moments of inertia, we need to integral `2dM over the
object, were ` is the distance from the axis we are evaluating the
moment around. For example, the distance from the x axis is y.
Starting with Ix, we have

Ix =

∫ 1

0

dx

∫ x2

0

dy(xy)(y2)

=

∫ 1

0

dx

[
xy4

4

]x2

0

=

∫ 1

0

dx
x9

4

=
1

40
.
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Then, for the moment around the y axis

Iy =

∫ 1

0

dx

∫ x2

0

dy(xy)(x2)

=

∫ 1

0

dx

[
x3y2

2

]x2

0

=

∫ 1

0

dx
x7

2

=
1

16
.

For the moment about the z axis, the integral to evaluate is

Iz =

∫ 1

0

dx

∫ x2

0

dy(xy)(x2 + y2),

however we can note that this is just Ix+ Iy = Iz: this is an example
of the parallel axis theorem and means we can just write down Iz =
1/16 + 1/40 = 7/80.

2. Given a semi–circular sheet (x ≥ 0) of material of radius a and constant
density ρ, find

(a) the centroid of the semicircular area;
By symmetry, we can see that ȳ = 0 (if you’re not convinced, do the
integral!). We begin by finding the mass

M =

∫
ρdA

= ρ

∫ a

0

rdr

∫ π/2

−π/2
dθ

=
ρπa2

2
.

Notice that we could have guessed this. A full circle would have mass
πa2ρ so a semi–circle has half of this. Now, to find the x coordinate
of the centre of mass, we must evaluate the integral

x̄ =
1

M

∫
xρdA

=
2

ρπa2
ρ

∫ a

0

r2dr

∫ π/2

−π/2
cos θdθ

=
4a

3π
.

(b) the moment of inertia of the sheet of material about the diameter
forming the straight side of the semicircle.
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This is the moment of inertia around the y axis, so the distance to
this axis is the x coordinate. Written in polar coordinates this is
r sin θ. To find the moment of inertia we evaluate

Iy =

∫
ρx2dA

= ρ

∫ a

0

r3dr

∫ π/2

−π/2
sin2 θdθ

= ρ
a4

4

∫ π/2

−π/2
(1− cos 2θ)dθ

= ρ
a4π

8
.

Note that the cos 2θ part of the integral does not need to be evaluated
as it is an even function over symmetric limits, so the result will be
zero.

3. Find the z coordinate of the centroid of a solid cone of height h equal to
the radius of the base r and uniform density ρ.
Also find the moment of inertia of the solid about its axis.

We begin by finding the mass, working in cylindrical coordinates and
taking care that the r integral produces a result that depends upon z, we
find that

M = ρ

∫ h

0

dz

∫ z

0

rdr

∫ 2π

0

dθ

=
ρπh3

3
.

To now evaluate the z coordinate of the centre of mass, we evaluate

z̄ =
1

M
ρ

∫ h

0

zdz

∫ z

0

rdr

∫ 2π

0

dθ

=
3

4
h.

We can see that both the mass and the position are dimensionally correct.

To find the moment of inertia, we note that the distance from the z axis
is just r, so we just evaluate the integrals as before

Iz = ρ

∫ h

0

dz

∫ z

0

r3dr

∫ 2π

0

dθ

=
ρπh5

10
.
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4. Find the moment of inertia of a solid ball of radius a and constant density
ρ about the z axis.
The mass of a sphere is just M = (4/3)πa3ρ, and the distance from the z
axis squared is x2 + y2. Converting to spherical coordinates gives

x2 + y2 = r2 cos2 φ sin2 θ + r2 sin2 φ sin2 θ

= r2 sin2 θ(cos2 φ+ sin2 φ)

= r2 sin2 θ.

Remembering that the volume element in spherical coordinates is dV =
r2 sin θdrdθdφ, we must evaluate the integral

Iz = ρ

∫ 2π

0

dφ

∫ π

0

sin3 θdθ

∫ a

0

r4dr

=
8πρa3

15
.

We’ve skipped the steps of the integrals, but everything is pretty standard
and the sin3 θ integral can be evaluated noting that sin3 θ = sin θ(1 −
cos2 θ).
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