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Viscous electron fluids have recently emerged as a way of explaining the transport of strongly
interacting electrons in clean nanoscale materials. Recent studies of the genesis of this fluidity,
and the effect of curved current injectors present an interesting open question: how is electron
flow at the onset of fluidity affected by geometric curvature of current injectors at the bound-
ary? Using complex analysis to reformulate the Boltzmann kinetic equation, we numerically
solve this problem for semi-elliptical and a semi-circular “groove” current injectors, to provide
some of the first insight into viscous effects caused by geometric curvature at the onset of flu-
idity. We demonstrate that effects predicted by hydrodynamic theory are also present at the
very onset of fluidity, caused by electrons moving against the electrical potential, manifesting
as voltage suppression at the tip of the needle and a build up of charge inside the “groove”
cavity. These effects are found to depend strongly upon geometric curvature, and become
more pronounced as electron-electron mean free path is decreased, although there are hints
that interaction driven effects could be maximal at intermediate mean free paths, dictated by
the exact geometry.
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I. Introduction

Electron transport in metals is usually dominated by
inelastic scattering with phonons or lattice impurities.
However more exotic transport regimes have long been
predicted [1–5], but have until recently eluded experi-
mental observation. The emergence of these new trans-
port regimes in metals can be understood by considering
the interplay between three length scales. The electron-
electron mean free path, `ee, describes the distance be-
tween electron-electron collisions, which conserve mo-
mentum. The electron-phonon and electron-impurity
mean free path `e−ph, gives the length scale at which
electron momentum is relaxed, and L is the size of the
system. For normal Ohmic transport `e−ph < `ee, L so
that electron momentum is relaxed very quickly, giving
transport described by Drude theory [6]. On the other
hand if electron-electron and electron-impurity scatter-
ing events occur at length scales larger than the size of
the system, L < `ee, `e−ph, then transport is ballistic
and described by the collisionless Boltzmann equation
[7]. Lastly, since carrier interactions are elastic, if these
are the dominant interaction mechanism, `ee < `e−ph, L,
then the resulting electron system can be described using
hydrodynamic theory [8], since it macroscopically con-
serves energy and momentum. Recent advances in pro-
ducing systems where electron-electron interactions are
very strong or scattering due to impurities and phonons is
weak, has led to the direct observation of electron fluids.
These strange systems may exhibit many hydrodynamic
phenomena such as vortices [9, 10], whirlpools [11, 12],
Poiseuille flow [13, 14] as well as higher than ballistic
conduction [15] and the breakdown of the Wiedemann-
Franz law [16]. Such phenomena are observed in a grow-
ing collection of clean metallic systems, such as GaAs
[1] and PdCoO2 [13] as well as graphene [9–12, 16–18].
Graphene presents a particularly good venue to observe
hydrodynamic electron transport due to its very clean
crystal structure [19] and suppressed phonon interactions
[20, 21]. Recent studies of phenomena caused by strong
carrier interactions[9, 10] show that the electron fluid
in graphene can be described by low Reynolds number
hydrodynamics [22], stated as the Ohm-Stokes equation
along with the usual incompressibility condition

(η∇2 − n2e2ρ)v = ne∇φ, ∇ · v = 0, (1.1)

where η is the viscosity, n is electron density, e is the
electronic charge, ρ is resistivity, v is the electron veloc-
ity and φ is the electrical potential. This is simply the
Stokes equation with an added Ohmic relaxation term,
which becomes dominant at length scales ξ =

√
`ee`e−ph

[10]. One should notice that in the absence of viscos-
ity η = 0, this is simply Ohm’s law and in the absence
of Ohmic resistivity ρ = 0 this is the Stokes equation.
This has been used to show, both theoretically and ex-
perimentally, that in strongly interacting electron fluids
the effect of carrier interactions is to de-couple current

and potential, resulting in non-local responses which can
manifest as electrons flowing against the potential [9, 10],
resulting in regions of negative potential near source or
positive potential near drain contacts [9–11, 14, 19, 23].
However, since graphene’s carrier density can be easily
gate tuned [10, 24], even richer physics may be observed.
Both the ballistic and hydrodynamic length scale inequal-
ities may be satisfied in the same sample. This has facil-
itated the exploration of the transition from ballistic to
hydrodynamic flow, where it has been shown that the ef-
fects of carrier interactions are maximal at the crossover
[25, 26]. It should be noted that in terms of the three
key length scales, the onset of fluidity occurs at `ee ∼ L
and L, `ee < `e−ph: as the electron system moves from
ballistics to hydrodynamics. Separately, curved current
injectors placed inside an electron fluid have been consid-
ered, where the effect of geometric curvature upon poten-
tial distributions and flow patterns in the hydrodynamic
regime was investigated [27]. It was shown that curva-
ture of current injecting electrons can have a large effect
upon the flow patterns and the potential. For example, a
large voltage suppression at the tip of elliptical contacts
is predicted by the fully hydrodynamic treatment.

We aim to extend understanding into the gap pre-
sented by recent works: the onset of fluidity on curved
geometries. To do this, we must answer the following
questions: are the hydrodynamic effects predicted on
curved geometries by the Stokes equation [27] also ob-
served at the onset of fluidity? How do these effects
depend upon parameters of the geometry and electron-
electron mean free path? When could these effects be
maximally observed in experiment? This work aims to
answer these questions, by applying a fully kinetic treat-
ment to curved current injector geometries located at the
boundary, rather than in the bulk as recent hydrody-
namic studies have considered [27], since this is a more
experimentally realistic configuration. Of particular in-
terest are elliptic current injectors, since this type of con-
tact is useful for imaging the electron flows [28, 29], hence
this is where most attention has been focused, although
it should be noted that our model is easily extendable
to many other curved geometries and is not limited to
either the ballistic or hydrodynamic limits.

The rest of this report is laid out as follows. In Sec-
tion II i we outline standard kinetic theory, and how this
may be applied to an electron gas on the Fermi sur-
face. The connection between kinetics and experimen-
tally measurable quantities is also explained, along with
how collisions in the bulk (away from boundaries) are
treated within this framework. Then in Section II ii we
present our own reformulation of the kinetic equation to
treat curved geometries, and explain the motivation be-
hind these analytic results. Section II iii then explains the
boundary conditions that are applied, and the assump-
tions behind them, in order to solve the kinetic equation
on curved geometries. The numerical solution of this sys-
tem is then outlined in Section III, before the results are
presented and discussed in Section IV.
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II. Theory

II.i. Kinetics

To explore the onset of fluidity, as well as the ballis-
tic and hydrodynamic regimes, we consider the kinetics
of electrons in a Fermi gas using the Boltzmann kinetic
equation. The application of kinetics to this problem is
motivated by the limitations of the Ohm-Stokes model
(1.1). Since it is a hydrodynamic model, it is valid only
in the limit `ee → 0. While it is possible to probe this
experimentally, in the hydrodynamic regime contact re-
sistance RV scales as RV ∝ η ∝ `ee [9] meaning that
as `ee → 0, φ → 0 making the effects difficult to probe.
Since the kinetic formalism does not only work in this
limit, a much larger range of mean free paths can be
treated, widening the range of systems, temperatures and
dopings to which this model might be applicable. With
this motivation, the Boltzmann kinetic equation [7] can
be written most generally as

I[f ] =
∂f

∂t
+ v · ∇f + F · ∂f

∂p
, (2.1)

where f is the distribution function, v is particle velocity,
p is particle momentum and F = −∇U(r) is the force
due to a general external potential U(r). Physically, f
represents the number of particles inside a given phase
space volume, drdp, so that the total number of particles
is given by

N =

∫
fdrdp, (2.2)

which in two dimensions is a four dimensional integral
over the x and y components of position and momen-
tum. The relaxation or redirection of particle momen-
tum is described by the collision integral I[f ]. Since we
consider the case of two-dimensional nanomaterials (such
as graphene), we can confine our analysis to two dimen-
sions (the x − y plane). The distribution function is in
general a function of position, momentum, energy and
time, f = f(r,p, ε, t), however we apply several impor-
tant assumptions to simplify this.

Firstly, we consider only steady state solutions, so that
f has no time dependence. This reduces dimensional-
ity from 6 dimensions to 5 dimensions f(r,p, ε, t) →
f(r,p, ε). Next, due to collinear scattering [30, 31], en-
ergy is relaxed more quickly than momentum so we can
assume that all electrons at the Fermi level have the same
energy, ε ≈ EF , thus we can also neglect the energy de-
pendence of the electrons. This further reduces the distri-
bution we consider from 5 dimensions to 4, f(r,p, ε) →
f(r,p). The assumption that electron energies are the
same also allows us to specify the electron momentum as
px = mvF cos θ, py = mvF sin θ, where vF is the Fermi
velocity. Momentum is therefore parametrised by the
single variable θ, which is the propagation direction on

the 2D Fermi surface, θ = arctan(y/x). This leaves us
with a three dimensional problem f(r,p)→ f(r, θ). The
reduction of dimensionality is important, since it lets us
move from a problem which is practically intractable to
numerical solution, to a problem which is manageable.
For convenience, we shall work in units where electron
momentum is equal to one.

The distribution function f(r, θ) represents the devia-
tion from the equilibrium distribution f0, giving the total
distribution, f̃ as

f̃ = f0 − f, (2.3)

where the equilibrium distribution is simply the Fermi-
Dirac distribution

f0 =
1

e(ε−µ)/kBT + 1
. (2.4)

Solving (2.1) under these assumptions for the perturba-
tion to the equilibrium distribution, f , permits the cal-
culation of experimentally measurable quantities such as
potential and current. If the angular average of the dis-
tribution is defined as

〈f〉 ≡
∫ 2π

0

f(r, θ)
dθ

2π
, (2.5)

then charge and current densities can be found by cal-
culating moments of the distribution function using this
definition

ρ(r) = 〈f(r, θ)〉, (2.6)

j(r) = 〈vf(r, θ)〉, (2.7)

where ρ(r) and j(r) are the charge and current densities
respectively. Current density can then be related to the
stream function, ψ, [22] using

jx = ne
∂ψ

∂y
, jy = −ne∂ψ

∂x
. (2.8)

Isolines of the stream function describe electron trajecto-
ries, providing a useful visualisation tool when analysing
flow patterns, as ψ represents the volume flux of particles.

To related charge density to electrical potential, φ(r),
we use the Thomas-Fermi screening approximation [6,
32]. The key assumptions of this model are that the
applied electrical field, φ is weak and slowly varying in
space. This approximation also assumes electrical neu-
trality at distances larger than the screening radius and
imposes that the electrical potential must compensate
exactly the charge density, allowing the potential to be
determined from charge density via

φ(r) = − 1

e2ν
ρ(r), (2.9)

where e is the charge of an electron and ν is the density of
states at the Fermi level. This allows the charge density
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we calculate to be connected to experimental measure-
ments of potential via a constant, which depends upon
the experimental system.

An important aspect of the kinetic model is the colli-
sion integral, I[f ]. This allows the type of collision (mo-
mentum conserving, momentum non-conserving or both)
being considered to be changed, and the strength of these
collisions set by the scattering rate γ. This collision rate
is related to the mean free path as ` = vF /γ, where γee
gives the rate of electron-electron collisions and γe−ph
is the rate of electron-phonon or electron impurity colli-
sions. The form of the collision integral used is

I[f ] = −(γee + γe−ph)(f − 〈f〉)− 2γeev̂ × 〈v̂f〉, (2.10)

where v̂ = (cos θ, sin θ). The collision integral can be un-
derstood by decomposing it into the Ohmic and viscous
parts

IOhmic[f ] = −γe−ph(f − 〈f〉), (2.11)

Iviscous[f ] = −γee(f − 〈f〉)− 2γeev̂ × 〈v̂f〉, (2.12)

so that the total collision integral is simply a linear com-
bination of the two I[f ] = IOhmic[f ] + Iviscous[f ].

The Ohmic collision integral is simply the well known
relaxation time approximation [6, 32], which describes
collisions with phonons or impurities, relaxing electron
momentum at length scales `e−ph. This conserves only
the first harmonic IOhmic[1] = 0, meaning that particle
number (or charge) is conserved but momentum is not.
This leads to classical Ohmic behaviour, with electrons
propagating according to Ohm’s law. For the viscous col-
lision integral we use a form [1, 33, 34] which conserves
the first three harmonics Iviscous[1] = Iviscous[cos θ] =
Iviscous[sin θ] = 0, meaning that x and y momentum as
well as particle number are conserved. This collision in-
tegral does not relax momentum, but just re-directs elec-
tron trajectories. The collision integral (2.10) allows the
mixed Ohmic-viscous behaviour given by solving (1.1)
to be studied using the kinetic treatment, as well as ei-
ther Ohmic or viscous behaviour in isolation by setting
γee or γe−ph to zero. Additionally, since the strength of
electron-electron interactions can be directly controlled
by changing γee, the onset of fluidity, full hydrodynamic
behaviour and ballistics can all be treated equally using
this formalism.

II.ii. Re-formulating the kinetic equa-
tion for curved geometries

Here we present our own re-formulation of standard
kinetics for a general conformal geometry. This is the tool
which will allow the inspection of the effects of geometry
upon electrical quantities at the onset of electron fluidity.
We begin with a brief discussion of conformal mappings,
before outlining our analytic results.

In general, the set of equations

u = u(x, y) v = v(x, y), (2.13)

specifies a transformation between the points in the x−
y and u − v planes. If each point in the u − v plane
corresponds to only a single point in the x − y plane
then this is a one-to-one transformation or a mapping.
A special case of this occurs when u and v are the real
and imaginary parts of a complex analytic function of a
complex variable so that

f(z) = w = u+ iv, (2.14)

where z = x + iy. Under the condition that f(z) is
analytic and f ′(z) 6= 0 in a region R then the mapping
w = f(z) is conformal at all points of R, meaning that
angles are preserved [35]. These mappings have been
used extensively to solve a wide range of fluid mechanics
and electrostatics problems [35, 36].

Here, conformal maps are used to allow curved ge-
ometries to be represented on rectangular computational
grids. The application of conformal maps is motivated by
the ease of numerical solution on rectangular grids, and
the accuracy of the representation of the curved bound-
ary. However this method requires that the kinetic equa-
tion (2.1) be reformulated to be solved on geometries de-
scribed by mappings, so that the electron trajectories we
solve for on the rectangular grid represent correctly the
electron trajectories on the curved real space geometry.

We shall now consider the effect of the mapping on
the conformal geometry, specified by spatial coordinates
u and v, where particles may propagate in the directions
β. We write the effect of the mapping as a local scale by
C(u, v) and rotation by α(u, v) so that some element of
the conformal geometry dw = du+ idv is related to some
element of the real space dz = dx+ idy as

dz = C(u, v)eiα(u,v) dw, (2.15)

where it can be noted that β+α = θ. Notice that (2.15)
is simply equivalent to writing a complex number in po-
lar form. It is important to note that the scaling and
rotation factors can be found from the functional form of
the mapping, since dz/dw = C(u, v) exp[iα(u, v)] mean-
ing that log(dz/dw) = logC + iα. Thus evaluating the
derivative dz/dw allows the scaling and rotation factors
to be determined.

With this, we have reformulated the kinetic equation
in terms of f = f(u, v, β), which may then be solved nu-
merically to give the solution for curved current injector
geometries located at the boundary. This can be done
by realising that taking the modulus of (2.15) gives us
the relation between the length of a line element in each
geometry

(dx2 + dy2) = |C(u, v)|2(du2 + dv2), (2.16)

which immediately gives us the Lagrangian [37] since

L =
1

2
m

(dr)2

(dt)2
=

1

2
m

(
dr

dt

)2

, (2.17)
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where dr is just the line element of the coordinate system.
Thus the Lagrangian is

L =
1

2
m|C|2(u̇2 + v̇2), (2.18)

where u̇ ≡ du/dt and v̇ ≡ dv/dt. The usual definitions
for finding canonical momenta, Pu and Pv, from the La-
grangian allow the construction of the Hamiltonian

Pu = m|C|2u̇, Pv = m|C|2v̇, H =
1

2m|C|2
(P 2
u + P 2

v ).

(2.19)

Then, writing these canonical momenta in terms of the
propagation directions to reduce the dimensionality of
the problem, as discussed previously, gives the following
relations

Pu = C
√

2mε cosβ, Pv = C
√

2mε sinβ, (2.20)

which may be inverted to to give propagation direction
as a function of momentum

β = arctan

(
Pv
Pu

)
, (2.21)

allowing derivatives with respect to momentum in (2.1)

∂f

∂Pu
=
∂f

∂β

∂β

∂Pu
,

∂f

∂Pv
=
∂f

∂β

∂β

∂Pv
, (2.22)

to be replaced with derivatives with respect to β

∂β

∂Pu
= − Pv

P 2
u + P 2

v

,
∂β

∂Pv
=

Pu
P 2
u + P 2

v

. (2.23)

To put all of this together, we use the Poisson bracket
[37] relation

df

dt
=
∂f

∂t
+ [f,H], (2.24)

where I[f ] ≡ df/dt, to write the full kinetic equation for
this problem

I[f ] =
∂f

∂t
+
vF
C

[
(v · ∇f)− ∂f

∂β
(v · ∇α)

]
, (2.25)

where vF is the magnitude of the Fermi velocity. We see
that the conformal map introduces scaling by 1/C(u, v)
and a term proportional to ∇α(u, v) which rotates par-
ticle trajectories. This must now be solved for f =
f(u, v, β), with appropriate boundary conditions, then
(2.6) and (2.7) can be applied to study the onset of fluid-
ity on curved geometries and reveal how both geometry
and `ee impact measurable electrical quantities like po-
tential and current.

While our analytic result is totally general, we focus
on solving two geometries. First, a half-ellipse (needle)
current injector at the edge of a sample. Such a geome-
try is of interest experimentally, since it might allow the

FIG. 1: Effect of mapping a) upper half plane to
geometries with curved boundaries: b) a half-ellipse and
c) a semi-circular groove. The map to the elliptic
boundary is given by (2.26) with semi-minor axis a and
semi-major axis b. The semi-circular groove mapping is
given by (2.27).

predicted fluidic implications [26] of elliptic geometries
to be realised in clean nanoscale material samples. The
half-ellipse geometry is described by the mapping [38]
from the upper half plane described by w(u, v) using the
complex analytic function

z = aw + b
√
w2 − 1, (2.26)

where z = x+ iy and w = u+ iv, with a and b the semi-
minor and semi-major axes of the ellipse, respectively.
The application of this mapping is shown in FIG. 1.

We also consider a semi-circular “groove” geometry,
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given by the mapping

z =
(w + 1)3/2 + (w − 1)3/2

(w + 1)3/2 − (w − 1)3/2
, (2.27)

where z and w have the same meanings as before, and
the effect of the mapping is shown in FIG. 1. When
discussing the half-ellipse geometry we have the freedom
to change a and b to investigate how this changes the
physical response of the system. For convenience, we
express these degrees of freedom as the single parameter,
curvature radius Rc, defined as

Rc =
a2

b
. (2.28)

For our investigations we fix a = 1 and change b. The
mapping for the “groove” does not have these additional
parameters to investigate.

II.iii. Boundary Conditions

In order to solve (2.25), suitable boundary conditions
must be applied. The boundary conditions used are
shown in FIG. 2, here we shall briefly discuss the as-
sumptions behind them.

We assume that all boundaries other than the y = 0
boundary and the ellipse are absorbing. In other words,
outside of the domain we study, electrons move freely into
the background sea of electrons. The current injecting
ellipse is endowed with a uniform current density and is
normalised to inject unit current, so that∫∫

J(r, β) sinβ
dβ

2π
dx = 1. (2.29)

This is arguably an over-simplification since in experi-
ment it is a uniform potential that is applied, however
this would add an additional level of complexity, since
current density must then be treated as unknown, (i.e.
see [27]). While simple, this model provides a good first
step in understanding this regime on curved geometries.
The angular distribution of the source gives a useful way
of tuning the strength of contact resistance. Here, the
larger the difference between the angular distribution of
injected current and the angular distribution of the bulk
solution, the larger than contact resistance.

We also impose that the current injecting ellipse and
lower boundary y = 0 scatter perfectly diffusively accord-
ing to Lambert’s law [39]. In other words, as well as the
injected current, the boundary behaves as an isotropic
current source due to this scattering. This condition is
expressed by conserving flux at the boundary

fs(u, v = 0, β > 0) =
1

2

∫ π

0

sinβ′f(u, v = 0,−β′)dβ′,

(2.30)
so that upwards flux is equal to downwards flux. The
factor 1/2 comes from integrating sinβ between 0 and π,

FIG. 2: Boundary conditions applied to the numerical
model. All boundaries other than the emitting
boundary and the y = 0 boundary are perfectly
absorbing (shown as blue). The lower boundary and
current injector scatters perfectly diffusively, according
to (2.30) (shown as grey/black rough surface). A
uniform current density is applied to the current
injecting region (red), defined through (2.29).

providing a normalisation factor. This condition means
that, rather than being lost, downwards moving parti-
cles are exactly compensated by the boundary condition,
being re-emitted equally in all directions. Once again,
this is the simplest possible model for boundary scatter-
ing, however this provides a well understood way of de-
scribing the boundary and has been used to solve similar
problems [26].

III. Numerical Solution of the
Kinetic Equation

The reformulated kinetic equation (2.25) has been
solved numerically, with the boundary conditions speci-
fied in Section II iii. In this section, the methods of nu-
merical solution are outlined and justified, with the dif-
ficulties presented by curved geometries and methods of
handling these also being mentioned. The two most im-
portant validations that were performed are presented in
detail, with several of the other validations mentioned.
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We begin by re-writing (2.25) as

∂f

∂t
= I[f ]− 1

C

[
(v · ∇f)− ∂f

∂β
(v · ∇α)

]
+ J(r, β) + fs(u, v = 0, β > 0), (3.1)

where we define the right hand side as the residual,
r = r(u, v, β). The terms describing the injected current
distribution J(r, β) and the effective secondary source
due to boundary scattering, fs have also been included.
Then the time derivative on the left hand side has been
approximated as

∂f

∂t
≈ f t+τ − f t

τ
⇒ f t+τ = τr + f t (3.2)

where f t denotes the distribution function f(u, v, β) at
time t, and τ is the time step. Moving to a discrete rep-
resentation of the problem, functional dependences are
replaced with indexes of the arrays used to represent r, f
etc. Therefore f(u, v, β)→ fijk, where i labels the u grid,
j the v grid and k the discretised propagation direction
grid, β. Since we are only interested in steady state solu-
tions, we iteratively step through time until the change
of f with time, given by the residual, is sufficiently small.

FIG. 3: Schematic representation of the upwind finite
difference scheme. The distribution at i is determined
by moving the distribution at point i± 1 onto point i,
depending upon the direction of the particle velocity.
This scheme is well known to be stable (under the well
known CFL condition) and produce accurate transport
properties [40].

Two main approaches have been used to represent
(2.25) on discrete spatial and directional grids. The colli-
sion integral (2.10), ∂/∂β, and scattering boundary con-
dition (2.30) have been expressed a operator matrices, so
that taking the dot product between the matrix fijk and
the operator matrix represents the corresponding term in
the kinetic equation. The v · ∇α term does not change
with time, so can be pre-calculated to just provide a pre-
factor for ∂f/∂β. With this, we need only discretise what
is just the advection equation ∂f/∂t = −v ·∇f . For this
type of advection problem it is common [40] to use up-
wind finite differences, shown schematically in FIG. 3.
This scheme, in one dimension, is written as

f t+τi − f ti
τ

= −vti

{
ft
i−f

t
i−1

h , for v > 0
ft
i+1−f

t
i

h , for v < 0
(3.3)

where h is the grid spacing, as in FIG. 3. The fidelity
of the transport described by this scheme may be under-

stood by considering the flow of information in the phys-
ical system. If a particle is moving to the right v > 0,
then the distribution at the point i depends upon the
point i− 1, as this is the part of the distribution that is
being “blown” along the chain of grid nodes. The oppo-
site is true if the particle is moving to the left, v < 0:
the distribution at point i+ 1 is being “blown” onto grid
point i. This scheme is both stable, and produces the cor-
rect transport properties [40]. It is also straightforward
to extend this to two dimensions.

Some care must be applied when utilising these finite
difference schemes on the curved geometries, since FIG. 1
shows how grid squares on the conformal geometry are
stretched by the factor C(u, v), meaning that the grid
step on the conformal geometry, ∆u,∆v, must be small
enough to produce sufficiently accurate results on the real
space grids, where the grid steps are ∆x = C∆u cosα−
C∆v sinα and ∆y = C∆v cosα + C∆u sinα, meaning
that the grid steps in real space are larger than on the
computational grid. Additional difficulty is presented by
the half-ellipse mapping (2.26), due to the square root
singularity at w = ±1. Indeed, the function is no longer
complex analytic at these points, so does not provide a
conformal map here. This has been avoided by shifting
our domain a small distance away from the singularities,
by saying wκ = w+κi, where κ is the smallest number for
which the numerical scheme will converge to a solution
within a reasonable time.

Several important validations have been performed
upon the numerical model, to verify that results are phys-
ically consistent. One of the most important validations
performed was the check that current is conserved. Let
us consider a Gaussian current source centred at (u0, v0)
with standard deviation σ

J(r, β) = A exp

(
− 1

2σ2

[
(u− u0)2 + (v − v0)2

])
,

(3.4)
where the coefficient A is determined by normalisation,
placed in the centre of a rectangle, where all four bound-
aries are absorbing. In two dimensions, current conser-
vation requires that

J(r) = nev(r) =
I

2πr
r̂, (3.5)

where I is the total injected current. Verifying correct
current conservation is extremely important, since a fail-
ure to do this means that transport is not represented
correctly, leading to unphysical results which cannot be
meaningfully interpreted. The result of this validation
is shown in FIG. 4. We plot J(r) × 2πr = I, which
should be normalised to be 1, so that the plot one should
expect for a correctly behaving model would be a con-
stant y = I = 1 line. This allows us to verify both the
correct 1/r behaviour and the conservation of current,
given by the factor 2π in two dimensions. We demon-
strate that current is successfully conserved to within
∼ 10−3%. This verifies the correct representation of
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FIG. 4: Validations of the numerical model: a)
demonstrates current conservation to within ∼ 10−3%,
as well as the expected 1/r decay. b) shows our
validation of the theory presented in [10],
demonstrating correct mixed Ohmic-viscous described
by (1.1) at the correct quantitative length scales, solved
using our kinetic framework.

transport properties (since physical quantities are con-
served) and correct normalisation (we aim to inject unit
current, and this is what is demonstrated). The large os-
cillations around the average seen in FIG. 4 are artefacts
of constructing a circle at radius r on a grid made from
rectangles. Behaviour at small r is distorted by the finite
size, σ, of the Gaussian source.

Another important validation performed was a demon-
stration of mixed Ohmic-viscous behaviour [10]. De-
scribed by the Ohm-Stokes equation (1.1), the situa-
tion where a single sample can exhibit both Ohmic and
viscous flow patterns has been experimentally realised
[12, 23]. In graphene, the Ohmic terms are weak, mean-
ing that at short distances exponential suppression of the
potential is expected, φ ∝ e−r/`ee , corresponding to vis-

cous flow. Then at distances ξ =
√
`e−ph`ee [10] the

Ohmic contribution becomes dominant, giving φ ∝ log(r)
behaviour. In FIG. 4 we demonstrate the excellent veri-
fication of this behaviour. At distances r < σ, the finite
size of the Gaussian source distorts behaviour, however
for σ < r < ξ least squares fitting of the expected viscous
model shows excellent agreement with our solution. Then
at distances r > ξ least squares fitting demonstrates the
correct Ohmic behaviour. This validation shows that our
model re-creates important literature results correctly,
giving both the correct crossover point, ξ, as well as the
correct Ohmic or viscous behaviour at the corresponding
length scales. This highlights the advantages of using a
fully kinetic description: we can access both fluid me-
chanics, ballistics and Ohmic behaviour on equal footing
by simply changing parameters of the model.

It is important to note that several other validations
were performed, but are not discussed in detail here. For
example, as well as the mixed behaviour shown in FIG. 4,
Ohmic and viscous behaviour were also validated in iso-
lation. The scattering boundary condition was validated
by recreating the space charge results for a point source
on the boundary given in [10]. The correct application
of the bending terms in (2.25) was validated by check-
ing that particles propagate in straight lines on the real
space grid in the ballistic limit. With all key elements
thoroughly validated we now present our results.

IV. Results and Discussion

We present the results of solving (2.25) using the
boundary conditions given in Section II iii and the numer-
ical methods outlined in Section III. Electrical potentials
and distances are given in arbitrary units. Here, we shall
answer the questions posed in Section I: are hydrody-
namic effects observed at the onset of fluidity? How do
these depend upon Rc and `ee? When are they maximal?
These will be answered first for the half-ellipse geometry
and then the groove geometry. Since we are interested
in viscous effects, we set γe−ph = 0 (i.e. `e−ph = ∞ so
electrons never scatter inelastically).

Potential maps for the half-ellipse geometry with Rc =
1/5 are shown in FIG. 5. The large suppression of po-
tential at the tip of the needle predicted by solution of
the Stokes equation [27] but we see here that it is also
observed in the crossover regime. The effect is observed
in the crossover regime both with minimal contact re-
sistance, and with large contact resistance. This pre-
diction is critical if this effect is to be observed experi-
mentally. The origin of the negative response here can
be understood by noting that the current changes sign
quickly over the needle tip. This requires electrons to
be backscattered, moving against the applied potential,
resulting in a “windshear” effect caused by the current
changing sign. We demonstrate that the viscous effects,
predicted by hydrodynamic theory [27], are also observed
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FIG. 5: Potential maps for the half-ellipse current injector, with Rc = 1/5. Unit current is injected through the
thick black line along the boundary and black lines are streamlines, indicating electron flow directions. a), b) and c)
have minimal contact resistances, while d) has large contact resistance.

at the very onset of fluidity. In addition, FIG. 5 qualita-
tively hints at how the negative response depends upon
`ee: a smaller mean free path enhances the suppression.
Examining colour bar values in FIG. 5, we see that for
`ee = 1 the negative response is ∼ 20% the strength of
the signal, but for `ee = 0.1 the negative response is
roughly as strong as the signal. This qualitative under-
standing gives us a good idea of what to expect when
the full dependence upon `ee is characterised. To better
understand the behaviour, the potential profile in a ver-
tical line from the tip of the needle is shown in FIG. 6
for various mean free paths both with and without con-
tact resistance. This shows clearly that for minimal con-
tact resistance, decreasing `ee produces larger suppres-
sion and that this is greatly reduced but still present
for large contact resistance. The reduction of this effect
by contact resistance can be understood by remember-
ing that V = IRV (where RV is contact resistance). A

larger contact resistance produces a larger electrode volt-
age in order to drive the same current (which is fixed
by the boundary condition), as can be seen by noting
the scales of the potential colour maps in FIG. 5. This
means that if the effect producing the negative response
is truly caused by the curvature at the needle tip then
it’s strength remains basically unchanged in the presence
of contact resistance. As a result, the geometric curva-
ture drives the same backflow, which is now much smaller
when compared to the applied potential. The effect be-
coming small compared to the background makes it diffi-
cult to observe, presenting an experimental challenge in
minimising contact resistance to observe this effect. This
is indeed what is demonstrated in FIG. 5 and FIG. 6.

In addition to the potential drop at the tip of the nee-
dle, which is the effect of interest, FIG. 5 exhibits large
potential drops at either side of the needle. These arise
from a similar “windshear” effect as at the tip of the nee-
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FIG. 6: Vertical potential profiles from the needle tip,
for minimal contact resistance for several `ee and for
large contact resistance, corresponding to the potential
maps shown in FIG. 5. For minimal contact resistance,
suppression grows with `ee and viscous suppression is
also seen in the presence of contact resistance, although
the effect is significantly weaker.

dle, however they are located near the square root sin-
gularity of the mapping (2.26), meaning that C is very
large here, causing significant deformation of the grid.
Therefore the discretisation here is poor, so the numer-
ical scheme will not produce a sufficiently accurate so-
lution here. The illustration of the mapping in FIG. 1
shows how the grid squares are stretched significantly at
the singularity points, but not at the tip. Hence why
our solution and discussion of the behaviour at the tip
is valid, but conclusions are not drawn about the regions
either side of the needle.

Next, the effect of curvature radius and `ee upon the
potential at the very tip of the needle, and the minimal
value of potential was considered. These results are given
in FIG. 7. It can be seen that the potential at the tip of
the needle is always positive. This means that the nega-
tive region observed in FIG. 5 forms some finite distance
away from the needle tip. This is consistent with the fact
that a uniform current density is enforced as a boundary
condition for the model. If one were to instead apply
a uniform potential then one might expect the negative
region to sit directly upon the tip, as for the fully fluid
mechanical treatment [27]. The potential at the tip is
suppressed as one decreases `ee, and at the same time the
potential is increasingly suppressed as curvature radius
decreases. The increase in suppression with decreasing
curvature radius, over all `ee is consistent with the origin
of the negative response being the shearing of fluid at
the tip. A smaller curvature radius means that the di-
rection of current changes more quickly, producing larger
viscous shear at the tip of the needle resulting in greater
backflow. The suppression then becomes larger as `ee is

FIG. 7: The effect of `ee and Rc upon the potential at
a) the very tip of the needle and upon b) the smallest
value of potential. Behaviour of the minimal value of
potential as `ee → 0 is shown in b), inset.

decreased. Since the effect of the geometric curvature
upon the flow is mediated by electron-electron collisions,
the more frequently these occur the more strongly the
effect of shearing is felt by the fluid. This is key to under-
standing the behaviour of the minimal value of potential,
shown in FIG. 7. Once again, it can be seen that geo-
metric curvature (enhanced by reducing Rc) produces a
voltage suppression due to shear at the tip which is en-
hanced further by reducing `ee. It should be noted that
for a semi-circular boundary, Rc = 1, a negative volt-
age is only produced for very small `ee however negative
voltages are accessed more easily as curvature radius is
made smaller. The behaviour at small `ee remains in-
conclusive. One might expect this this to saturate at a
constant value dictated by RV , or to increase again as
`ee → 0, as a fully fluid mechanical treatment predicts
[26]. The results presented here might indicate either
behaviour, and finer grids could be used to answer this
question. The hydrodynamic limit is difficult to reach
since capturing flow behaviour accurately requires that
∆x,∆y < `ee (i.e. we require several grid nodes per
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FIG. 8: a) Ballistic and b) Ohmic flow patterns for the
needle current injector. In both cases no potential
suppression at the tip is observed, demonstrating that
this effect is a direct consequence of elastic
electron-electron interactions.

mean free path to properly approximate the behaviour),
and finer grids require significantly more computational
work.

What we witness here, shown in FIG. 5, FIG. 6 and
FIG. 7, is an effect which arises from electron-electron
interactions, in a regime which is not fully hydrody-
namic. We can demonstrate that this is indeed the ef-
fect of electron-electron interactions by contrasting the
behaviour with the ballistic limit and Ohmic transport,
both of which are easily accessible using the kinetic treat-
ment. The flow patterns for these regimes are shown in
FIG. 8. We see that in both Ohmic (`e−ph < `ee, L) and
ballistic (L < `ee, `e−ph) regimes, where electron-electron
interactions are not the dominant transport mechanism,
there is no suppression of potential at the tip of the nee-
dle. This demonstrates that electrons moving against

the potential is indeed due to collective motion arising
from elastic electron-electron scattering. It is, however,
unclear whether this effect is maximal at the crossover
from ballistics to hydrodynamics, as is predicted for sim-
pler geometries [26], which is a question that might be
answered by the behaviour at smaller mean free paths.
Regardless of this, we show that the fingerprints of elec-
tron viscosity, arising from elastic electron-electron col-
lisions, are observed in the crossover regime, and that
these effects can enhanced by choosing geometries which
induce a larger shearing force on the fluid.

FIG. 9: a) Schematic representation of the depletion
integral (4.1), b) the variation of this quantity with `ee
and Rc. Only results where the negative region was
present have been included. In contrast to FIG. 6 and
FIG. 7, these results exhibit a clear minima at
intermediate mean free paths.

So far, it seems as though if one wanted to observe
this effect experimentally then the smallest possible cur-
vature radius of the half-ellipse should be used, along
with a minimal `ee. However another characteristic of
the crossover regime which is of interest is the amount
of depletion the backflow causes. Knowledge of such
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FIG. 10: Potential maps for the groove geometry. Unit current is injected through the solid black line along the
curved boundary. Black lines are streamlines and denote the trajectories of electrons. Green lines are potential
isolines, shown in the vicinity of the groove to illustrate the build up of charge inside the cavity. Stars indicate the
position of maximal potential inside the cavity, caused by collective motion of electrons. Maps a), b) and c)
demonstrate the presence of the effect at the crossover from ballistics to hydrodynamics and d) shows that the effect
is also present in the fully ballistic regime.

behaviour is of obvious interest for scanning gate mi-
croscopy methods for imaging the electron flows [28, 29].
Since these methods use a needle to image flows, our re-
sults indicate that these methods cause depletion of the
electron fluid. A natural question to ask might be: un-
der what conditions is the depletion maximal? To answer
this question, we define the depletion integral as

ID =

∫
∂Ω

φ(x, y)dxdy, (4.1)

where the region ∂Ω denotes the entire negative region
formed at the tip. This is obtained by drawing con-
tour lines of the potential and then defining the region
∂Ω as the area inside the zero potential contour drawn
around the region of negative potential at the tip (shown
in FIG. 9). The potential is then integrated over this

region. The dependence of ID upon `ee and curvature
radius is presented in FIG. 9. Only data where the zero
potential contour could be drawn have been included in
FIG. 9. If one only considers the potential the tip, then
FIG. 7 indicates that a minimal mean free path should be
used in order to observe the effect most strongly, however
FIG. 9 shows that values of the depletion integral exhibit
clear minima at intermediate mean free paths. Again we
see that since this effect is due to shear at the tip of the
needle, the depletion is larger for smaller curvature radii
and the effect is only accessible for increasing mean free
paths as curvature radii is increased. This means that the
collective motion of electrons, driven by their interaction,
is demonstrated to be maximal for an intermediate value
of `ee, which depends upon exact geometry.

This leads us to conclude that for the needle geome-
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FIG. 11: Potential profile from the bottom of the groove for several `ee shown for a) the crossover from ballistic to
hydrodynamic flow and b) Ohmic flow. The location of the peak is shown as a star on the colour maps in FIG. 10.
The vanishing of the effect when moving to Ohmic flow demonstrates that this is an interaction driven effect. c)
Relative height of the peaks shown in a) to show that if one considers the relative height, the viscous boost is
increased as `ee is decreased.

try, the effects of viscosity are pronounced by geometric
curvature, thus as small as possible RC should be used
to observe this effect. Then, to maximise the chances of
detection using only potential measurements a minimal
`ee should be used, however if one can measure depletion
or the size of the negative region then intermediate mean
free paths are preferable. It could also be useful to con-
nect the length scales at which the negative response is
maximal to features of the geometry, for example it has
been suggested [27] that the negative response might be
maximal when `ee ∼ a (where a is the semi-minor axis
of the ellipse). While our results for depletion integral in
FIG. 9 hint at this kind of behaviour, a detailed analysis
of this is beyond the scope of this work.

In addition to the needle geometry, we also consider
a groove geometry, shown in FIG. 1. Potential maps
for this geometry are shown in FIG. 10. If one solves

this problem in the low Reynolds number hydrodynamic
limit, using the Stokes equation, i.e. (1.1) with ρ = 0,
then viscous effects are expected to lead to a build up of
charge somewhere inside the cavity. This can be thought
of as the exactly opposite effect to the depletion that is
seen for a needle current injector. The positive contri-
bution can be understood by examining the streamlines
in FIG. 10. On the needle geometry, the streamlines
clearly show the shear at the tip of the needle as they are
“splayed”, and here they are “pushed” together. Then,
the equipotential lines (shown in green in FIG. 10) show
that electrons are flowing against the potential to col-
lect at the maximal point. This means that the regions
around the maximal value (shown as a star in FIG. 10)
are depleted, as for the needle geometry, in order to sup-
port the collection of charge at the maximal value. This
is demonstrated if one considers the profile of potential
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from the bottom of the groove, moving vertically up-
wards, shown in FIG. 11. We see clearly the effect of
viscous backflow upon producing a well defined max-
ima of potential inside the groove. For larger `ee the
peak is larger, which might lead to the conclusion that
the effect is maximal as one moves towards the ballistic
regime. However, it makes more sense to instead consider
the relative size of the peak by looking at the quantity
100×(φmax−φ0)/φmax, where φmax is the peak value, and
φ0 is the potential at the bottom of the groove (shown on
FIG. 11). This is plotted in FIG. 11, and gives the height
of the peak as a percentage of the maximal value of the
peak. Looking at the relative height allows the size of the
effect relative to the background to be shown, which is
a more important consideration for experimental valida-
tion. We see that by considering the relative height of the
peak instead of its absolute value, the potential boost is
larger for smaller `ee. This is consistent with our expecta-
tion that this effect is caused by the geometric curvature
but mediated by elastic carrier collisions, resulting in a
viscous response at the onset of fluidity. Interestingly,
unlike the needle geometry the effect is visibly present
in the ballistic regime, however is still washed away in
the Ohmic regime, as we see in FIG. 11. We see that
for Ohmic flow there is no longer a build up of charge
inside the cavity demonstrating that, as for the suppres-
sion of potential at the tip of the needle, this effect arises
directly due to carrier interactions.

Our results here are inconclusive, however predict the
effects of electron-electron interactions to be present in
the crossover from hydrodynamic to ballistic flow for this
geometry, although it remains unclear whether the effect
is enhanced in this regime.

V. Conclusion

To conclude, we have presented our own reformulation
of the Boltzmann kinetic equation for a general curved
geometry described by a conformal map (2.25), then
solved this numerically to investigate the effect of geo-
metric curvature on electron flows at the onset of fluidity.
We have extended understanding beyond the onset of flu-
idity in a Hall Bar geometry [26] and curved geometries in
a fully hydrodynamic limit [27]. The questions we aimed
to answer were: are the fully hydrodynamic effects pre-
dicted by (1.1) also present at the onset of fluidity? How
do these depend upon parameters of the geometry and
`ee? When can these effects be maximally observed? To
answer these questions we considered both a half-ellipse
current injector and a semi-circular groove current injec-
tor, investigating how current injector curvature plays a
role in determining potential and flow patterns.

For the needle current injector, hydrodynamic theory
predicts a large voltage suppression at the tip of the nee-
dle and for the groove current injector a charge build
up inside the cavity is predicted. We demonstrate that

both of these effects are observed in the crossover from
ballistics to hydrodynamics, at the onset of fluidity. By
contrasting our results at the onset of fluidity with results
for Ohmic flow we show that both the voltage suppression
and the voltage boost are direct consequences of carrier
interactions, meaning that we observe effects that are un-
derstood in terms of viscous fluids, at the very onset of
the hydrodynamic regime. Since we have shown that the
effects of viscosity are seen both with minimal and large
contact resistance, there is cause for optimism that these
effects could be experimentally realised.

We have shown that these effects are sensitive to both
`ee and curvature effects. For the half-ellipse current in-
jector, a smaller curvature radius produces a larger volt-
age suppression at the tip. This arises because a smaller
curvature radius produces a larger shear at the tip, and
since viscosity is the resistance to shear, the voltage
suppression due to this becomes larger. Electrons flow
against the potential to compensate the change in sign
of the current. The de-coupling of current and potential
distributions characteristic of carrier interaction domi-
nated transport regimes [9, 26] is shown to be present at
the onset of fluidity and caused by geometric effects. We
find that then decreasing `ee further increases the voltage
suppression, indicative of a carrier interaction dominated
transport regime. Similarly for the groove geometry, we
demonstrate that curvature produces flow against the po-
tential due to collective motion of electrons, at the onset
of fluidity. Instead of producing a suppression of poten-
tial a “boost” is observed, whereby charge builds up at a
maximal point inside the cavity. We find that again this
is sensitive to `ee and that if one considered the relative
height of the potential peak, then the effect becomes more
pronounced at smaller mean free paths. Again this is the
observation of a carrier interaction dominated regime, at
the onset of fluidity.

The viscous suppression or boosting of potential is
shown to be maximal for small `ee, although there are
hints that the effects could be maximal for intermediate
mean free paths. So, to observe this effect maximally, one
should use as small as possible mean free path and cur-
vature radius. Although behaviour as `ee → 0 remains
inconclusive, this could be examined using this model.

We leave several open questions that could be inves-
tigated using this model. A more complete study of
the effect in the presence of contact resistance and at
smaller mean free paths would be useful for experimen-
tal realisation of this, or in connecting this theory to
experimental results and other studies in the fully hy-
drodynamic limit. Also, more realistic boundary con-
ditions could be applied. A uniform current density is
not experimentally practical, so instead a uniform po-
tential should be used. Aside from simple extensions of
this work, our model could be used to answer several
deeper questions. For example, weak magnetic fields can
be used to image electron flows [28], so the effects of these
should be considered. This is an almost trivial extension
to this model, since we have already expressed ∂/∂β as
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an operator matrix, and an external magnetic field sim-
ply adds a ωc∂f/∂β term to the kinetic equation, where
ωc = eB/m is the cyclotron frequency. This would al-
low the intrusiveness of such measurement methods upon
electron flows to be considered in full detail for a wide
range of mean free paths. Additionally, since our ana-
lytic results are completely general, many other current

injector shapes could be investigated, including variously
shaped cavities and steps etc. A detailed analysis of the
length scales at which the effects of interactions are dom-
inant would also be of interest. For example, is the dis-
tance at which the negative response is largest dependent
upon a, b or Rc?
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