PHY2021 Electromagnetism I

Week 4 Problems: Gauss's Law and Multipole Moments

James Capers

October 17, 2020

The volume and surface elements in cylindrical coordinates are ${ }^{1}$

$$
d S=r d \phi d z \quad d V=r d r d \phi d z
$$

1. (a) Evaluate the indefinate integral ${ }^{2}$

$$
\int \frac{1}{\sqrt{a^{2}+x^{2}}} d x
$$

(b) Evaluate the integral 3

$$
\int \frac{x}{\left(a^{2}+x^{2}\right)^{3 / 2}} d x
$$

2. Given an electric field

$$
\boldsymbol{E}=k f(r) \hat{r}
$$

where k is a constant and $f(r)$ is some function of radial position r, find an expression for the charge density associated with the electric field.
3. A long coaxial cable carries a uniform volume charge density ρ on the inner cylinder, of radius a and a uniform surface charge density σ on the outer cylindrical shell, which has radius b. The surface charge is negative and is of the correct magnitude that the cable as a whole is electrically neutral.
Find the electric field in each of the three regions:
(i) $r<a$,
(ii) $a<r<b$,
(iii) $r>b$.

Plot $|\boldsymbol{E}|$ as a function of r.
4. Consider a cylinder of radius R and length L centered at the origin, laying along the z axis, with a charge density

$$
\rho=\rho_{0} \sin \left(\frac{\pi z}{L}\right)
$$

(a) Plot the charge density as a function of z.
(b) Find the dipole moment of the cylinder.
${ }^{1}$ https://en.wikipedia.org/wiki/
Cylindrical_coordinate_system
${ }^{2}$ Consider the substitution $x=a \sinh u$, remembering that $\cosh ^{2} \theta-\sinh ^{2} \theta=1$.
${ }^{3}$ Hint: The substitution $u=a^{2}+x^{2}$ might simplify the problem.

Figure 1: The situation considered in question 3.

