Some Integrals

James Capers
School of Physics, University of Exeter

(Dated: October 2, 2020)
Here we will evaluate a couple of integrals which might come up in the tutorial problems. These integrals may seem challenging, but can in fact be solved using only elementary substitutions, as will be demonstrated.

We begin by considering the integral

$$
\begin{equation*}
I=\int d x \frac{x}{\left(a^{2}+x^{2}\right)^{3 / 2}} \tag{1}
\end{equation*}
$$

To evaluate this, we only need the substitution $u=a^{2}+x^{2}$.

$$
\begin{aligned}
I & =\int d x \frac{x}{\left(x^{2}+a^{2}\right)^{3 / 2}} \\
u & =a^{2}+x^{2} \\
d x & =\frac{d u}{2 x} \\
\Rightarrow I & =\int \frac{d u}{2 x} \frac{x}{u^{3 / 2}} \\
I & =\frac{1}{2} \int \frac{d u}{u^{3 / 2}}
\end{aligned}
$$

This can now be integrated in the usual way.

$$
\begin{aligned}
I & =\frac{1}{2} \int \frac{d u}{u^{3 / 2}} \\
& =-\frac{1}{\sqrt{u}} \\
\Rightarrow \int d x \frac{x}{\left(x^{2}+a^{2}\right)^{3 / 2}} & =-\frac{1}{\sqrt{a^{2}+x^{2}}} .
\end{aligned}
$$

Next, we consider

$$
\begin{equation*}
I=\int d x \frac{1}{\left(x^{2}+a^{2}\right)^{3 / 2}} . \tag{2}
\end{equation*}
$$

Again, this can be solved by substitution however must now use $x=a \tan u$. Along the way, we will also make use of

$$
1+\tan ^{2} x=\frac{1}{\cos ^{2} x}, \quad \quad \frac{d}{d x} \tan x=\frac{1}{\cos ^{2} x} .
$$

So, we make the substitution

$$
x=a \tan u \quad d x=a \frac{1}{\cos ^{2} u} d u
$$

so that the integral becomes

$$
\begin{aligned}
I & =\int a \frac{1}{\cos ^{2} u} d u \frac{1}{\left(a^{2} \tan ^{2} u+a^{2}\right)^{3 / 2}} \\
& =a \int \frac{d u}{\cos ^{2} u} \frac{1}{a^{3}\left(\tan ^{2} u+1\right)^{3 / 2}} \\
& =\frac{1}{a^{2}} \int \frac{d u}{\cos ^{2} u} \cos ^{3} u \\
& =\frac{1}{a^{2}} \int d u \cos u
\end{aligned}
$$

Now we can integrate this easily!

$$
I=\frac{1}{a^{2}} \sin u .
$$

All we have to do now is undo the substitution to get everything in terms of x again. To do this, we need to remember that x and a are the opposite and adjacent sides of a triangle of hypotenuse $h=\sqrt{x^{2}+a^{2}}$. Noticing that u just defines the angle of the triangle, and that $\sin \theta=\sin u=x / h$, we can write

$$
\begin{aligned}
u & =\operatorname{atan} \frac{x}{a} \\
I & =\frac{1}{a^{2}} \sin \left(\operatorname{atan} \frac{x}{a}\right) \\
\Rightarrow \int d x \frac{1}{\left(x^{2}+a^{2}\right)^{3 / 2}} & =\frac{1}{a^{2}} \frac{x}{\sqrt{a^{2}+x^{2}}}
\end{aligned}
$$

