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Here we will evaluate a couple of integrals which might come up in the tutorial prob-
lems. These integrals may seem challenging, but can in fact be solved using only ele-

mentary substitutions, as will be demonstrated.

We begin by considering the integral

x
= | g

To evaluate this, we only need the substitution v = a? + z2.
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This can now be integrated in the usual way.
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Next, we consider
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Again, this can be solved by substitution however must now use x = a tanu. Along the way, we

will also make use of
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So, we make the substitution
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so that the integral becomes
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Now we can integrate this easily!
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All we have to do now is undo the substitution to get everything in terms of x again. To do
this, we need to remember that x and a are the opposite and adjacent sides of a triangle of
hypotenuse h = v/x2 + a?. Noticing that u just defines the angle of the triangle, and that

sinf = sinu = x/h, we can write
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